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1. 

One of the main physical conditions for the enhancement of thermally excited acoustic
oscillations is given by the Rayleigh criterion [1]. The criterion states that if heat is added
to an acoustically oscillatory mass of a gas, the amplitude of oscillations will increase if
the heat addition takes place when the pressure is higher than the average. The same effect
will occur if heat is extracted when the pressure is lower than the average.

Putnam and Dennis [2] indicated a mathematical expression for the Rayleigh criterion,
given by

D=G q̇'P' dtq 0, (1)

where q̇' is the oscillating heat release, P' is the acoustic pressure, t is time and where the
integral is calculated over a cycle of oscillation. The inequality of expression (1) means that
acoustic oscillations at a determined position inside an enclosure will be amplified if the
cyclic integral is larger than zero. The oscillation will have maximum amplification for the
maximum value of the integral. If there is damping, which always happens, some positive
value will replace zero in the right side [3].

Oran and Gardner [4] attribute to Chu [5], who first derived expression (1) based on
the conservation equations, a physically consistent foundation for the mathematical
formulation of Rayleigh’s criterion. Chu’s basic idea was to calculate if the energy
associated with the perturbation grows along an oscillation cycle as a result of its
interaction with the energy source. In a later paper, Chu [6] derived a generalized form
of the Rayleigh criterion. Culick [7] worked on the Rayleigh criterion for non-linear
acoustics.

The use of the Rayleigh criterion with restricted linear parameters is still a powerful tool
to explain the fundamentals of the thermo-acoustic phenomenon in Rijke tubes. Examples
of its utilization include the works of Carvalho et al. [8, 9] and Bai et al. [10].

The purpose of this note is to present a new and simple derivation, based on linear
acoustics, of the Rayleigh criterion in its integral form.

2.  

The equations of continuity, momentum, and energy for linear one-dimensional
acoustics in an inviscid non-isothermal flow in a control volume are, respectively,

1r'/1t+(1/1x)(r̄u')=0, r̄
1u'
1t

=−
1P'
1x

, (2, 3)

1P'
1t

= c2 01r'
1t

+ u'
1r̄

1x1+(g−1)0G� '− 1q̇'
1x1 , (4)
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where r is density, P is pressure, u is flow velocity, c is speed of sound, g is the relation
between specific heats, G� is the heat release rate, and q̇ is the heat flux through the
boundaries of the control volume and where the symbols – and . represent average and
acoustic parameters, respectively. The above equations are easily obtained by perturbing
the conventional conservation equations and retaining the first order terms.

The assumptions to obtain the conservation equations in the form written here are: (1)
ū depends exclusively on the axial co-ordinate x and has the same order of magnitude of
the acoustic velocity amplitude, u'max , both being one order of magnitude smaller than the
speed of sound, (2) the mean flow is uniform and steady, (3) there is no area variation
along the flow, (4) the perturbation is periodical, (5) viscosity is negligible and (6) specific
heats are constant.

Figure 1 shows a tube of length L with a heat source of small longitudinal dimension
located at a distance l from one of the tube ends. An acoustic perturbation is considered
as propagating along the cold and hot regions, both maintained at constant mean
temperatures T1 and T2, and the heat flux q̇ is assumed to be negligible. Two control
volumes are defined: one for the cold region and the other for the hot region. For constant
r̄, equation (3) can be multiplied by u' to give

(1/1t)(1
2r̄u'2)+(1/1x)(P'u')−P'(1u'/1x)=0. (5)

The above equation is analogous to the one-dimensional mechanical energy
equation [11] and can be taken as a conservation equation. To demonstrate this fact,
it is necessary to proceed with some manipulations. First, the term 1u'/1x is identified
by its equivalent obtained from the acoustic continuity equation (2), for conditions
of constant r̄, i.e.,

1u'/1x=(1/r̄)(1r'/1t). (6)

On the other hand, the acoustic energy equation (3) applied to the control volumes defined
in Figure 1 results in

P'/r'= c2. (7)

Combination of equations (6) and (7) yields

(1/1t)(1
2r̄u'2 + 1

2(P'2/r̄c2))+(1/1x)(P'u')=0, (8)

where the terms 1
2r̄u'2 and 1

2(P'2/r̄c2) are related to the variations of acoustic kinetic energy
and acoustic potential energy, respectively. The space derivative of the product P'u'
represents the acoustic energy flux, also called acoustic intensity [12]. Equation (8) takes

Figure 1. Schematic of tube with a heat source.
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a typical form of a conservation equation if integrated over a fixed control volume V,
utilizing the Gauss theorem to transform the volume integral in a surface integral:

1

1t ggg
V
01

2r̄u'2 + 1
2

P'2

r̄c21 dV+gg
S

P'u' dA=0. (9)

Up to this point, the derivation is new. In the next, Chu’s concept of energy in a small
disturbance [6] is followed. For the control volume of the cold region, integration of
equation (9) yields

1E'M,1/1t+A(P'1,lu'1,l −P'1,0u'1,0)=0, (10)

where EM denotes mechanical energy. Analogous integration for the hot region yields

1E'M,2/1t+A(P'2,Lu'2,L −P'2,lu'2,l)=0. (11)

The product P'u' at the sections x=0 and x=L will always be zero because a tube end
is either a pressure node or a velocity node, depending if the section is opened or closed.

Because P' is continuous at the interface between the cold and hot regions, the time
variation of the mechanical energy in the tube is obtained adding the respective time
variations in each of the tube regions:

1E'M/1t=(1/1t)(E'M,2 +E'M,1)=A(P'2,lu'2,l −P'1,lu'1,l)=AP'l (u'2,l − u'1,l). (12)

Now it is necessary to evaluate the difference between the acoustic velocities at the interface
between the cold and hot regions, which can be achieved with an energy balance applied
to both sides of the heater element:

q̇= r2u2(cp2T2 + 1
2u

2
2)−r1u1(cp1T1 + 1

2u
2
1), (13)

where q̇ is the heat rate transferred to the flow per unit area of the heater element.
Considering that, for low velocities, the kinetic energy term can be neglected in relation
to the thermal energy term, the following results from the heat balance:

q̇= r2u2cp2T2 − r1u1cp1T1. (14)

The parameter T in equation (14) can be substituted by equivalent parameters using the
ideal gas equation of state and the relation between specific heats for an ideal gas,
leading to

q̇=[g2/(g2 −1)]P2u2 − [g1/(g1 −1)]P1u1. (15)

Replacing each flow parameter in the above equation by its corresponding mean value plus
an acoustic perturbation,

q̄�+ q̇'= [g2/(g2 −1)](P�2 +P'2)(ū2 + u'2)−[g1/(g1 −1)](P�1 +P'1)(ū1 + u'1). (16)

Assuming that the mean variables express a particular balance, equation (16) can be
rewritten as

q̇'
P�2c2

=
g2

g2 −1 0u'2
c2

+
P'2
P2

ū2

c2
+

P'2
P�2

u'2
c21− g1

g1 −1 0P�1

P�2

u'1
c2

+
P'1
P�2

ū1

c2
+

P'1
P�2

u'1
c21 , (17)

where all terms have been divided by P�2c2 to show their relative importance. Except for
flow velocity, the acoustic parameters are one order of magnitude lower than the
corresponding mean parameters, and both the acoustic and mean flow velocities are one
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order of magnitude lower than the speed of sound, in such a way that equation (17) is
reduced to

q̇'= [g2/(g2 −1)]P�2u'2 − [g1/(g1 −1)]P�1u'1 . (18)

The relation between the mean pressures at each of the sides of the heat source is
obtained by balance of momentum in the heat source section:

P�1 + r̄1ū2
1 =P�2 + r̄2ū2

2. (19)

Because the gas is assumed to be an ideal gas, P� can be replaced by r̄c2/g. Thus:

r̄1c2
1/g1 + r̄1ū2

1 = r̄2c2
2/g2 + r̄2ū2

2, (20)

where the terms containing the square of flow velocity can be neglected in comparison with
the terms containing the square of the speed of sound, yielding

P�1 =P�2 =P�. (21)

Substituting the result of equation (21) in equation (18), the following is obtained for
constant specific heats:

q̇'= [g/(g−1)]P�(u'2 − u'1). (22)

Substituting this result in equation (12) and integrating over a cycle of oscillation, the
increment of acoustic energy becomes

DE=
g−1

g

A
P�1 g

t

0

q̇'P' dt. (23)

The quantities multiplying the integral on the right side of equation (23) are all positive,
implying that the energy of the perturbation will grow if the integral is positive, and
vice-versa. The inequality that represents Rayleigh criterion is therefore demonstrated in
a simple manner.
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